Finite Element Analysis of Buckling of Thin Cylindrical Shell Subjected to Uniform External Pressure

Authors

  • B Prabu Department of Mechanical Engineering, Pondicherry Engineering College
  • K.A.S Naarayen Department of Mechanical Engineering, Pondicherry Engineering College
  • N Rathinam Department of Mechanical Engineering, Pondicherry Engineering College
  • R Srinivasan Department of Mechanical Engineering, Pondicherry Engineering College
Abstract:

One of the common failure modes of thin cylindrical shell subjected external pressure is buckling. The buckling pressure of these shell structures are dominantly affected by the geometrical imperfections present in the cylindrical shell which are very difficult to alleviate during manufacturing process. In this work, only three types of geometrical imperfection patterns are considered namely (a) eigen affine mode imperfection pattern, (b) inward half lobe axisymmetric imperfection pattern extended throughout the height of the cylindrical shell and (c) local geometrical imperfection patterns such as inward dimple with varying wave lengths located at the mid-height of the cylindrical shell. ANSYS FE non-linear buckling analysis including both material and geometrical non-linearities is used to determine the critical buckling pressure. From the analysis it is found that when the maximum amplitude of imperfections is 1t, the eigen affine imperfection pattern gives out the lowest critical buckling pressure when compared to the other imperfection patterns considered. When the amplitude of imperfections is above 1t, the inner half lobe axisymmetric imperfection pattern gives out the lowest critical buckling pressure when compared to the other imperfection patterns considered.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Numerical Analysis of Delamination Buckling in Composite Cylindrical Shell under Uniform External Pressure: Cohesive Element Method

Nowadays, due to high ratio of strength to weight, composite cylindrical shells are extensively used in a great variety of different industrial applications and under different cases of loads. In this study, the buckling of composite cylindrical shells was examined under uniform external pressure. The buckling analysis of composite cylindrical shells was first done by using theoretical relation...

full text

Numerical Analysis of Delamination Buckling in Composite Cylindrical Shell under Uniform External Pressure: Cohesive Element Method

Nowadays, due to high ratio of strength to weight, composite cylindrical shells are extensively used in a great variety of different industrial applications and under different cases of loads. In this study, the buckling of composite cylindrical shells was examined under uniform external pressure. The buckling analysis of composite cylindrical shells was first done by using theoretical relation...

full text

Evaluation of Buckling and Post Buckling of Variable Thickness Shell Subjected to External Hydrostatic Pressure

Buckling and post buckling of cylindrical shells under hydrostatic pressure is regarded as important issue in structure of submarines. These cylindrical shells have variable thickness due to construction process which effected by pressure of buckling and its destruction. In this paper, effects of changing thickness on buckling and destruction pressure under external hydrostatic pressure of a sh...

full text

Modelling of Random Geometrical Imperfections and Reliability Calculations for Thin Cylindrical Shell Subjected to Lateral Pressure

It is well known that it is very difficult to manufacture perfect thin cylindrical shell. Initial geometrical imperfections existing in the shell structure is one of the main determining factor for load bearing capacity of thin cylindrical shell under uniform lateral pressure. As these imperfections are random, the strength of same size cylindrical shell will also random and a statistical metho...

full text

the axisymmetric bifurcation analysis of an elastic cylindrical shell subjected to external pressure and axial loading

in this paper, the deformation of a thick-walled circular cylindrical shell of incompressible isotropic elastic material is considered. the shell, which is made of three-term strain energy function is subjected to the combined external and axial loading pressure. in order to obtain the relevant eigenvalues, which is the main objective of the work, the incremental equilibrium equations are so...

full text

Stability Analysis of Laminated Cylindrical Shells under Combined Axial Compression and Non-Uniform External Pressure

This study investigates geometrical non-linear analysis of composite circular cylindrical shells under external pressure over part of their surfaces and also shells subjected to combined axial compression and triangular external pressure. Donnell non-linear shell theory along with first order shear deformation theory (FOSD) are adopted in the analysis. In the case of combined axial compression ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue 2

pages  148- 158

publication date 2009-06-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023